منابع مشابه
The Haar Measure
In this section, we give a brief review of the measure theory which will be used in later sections. We use [R, Chapters 1 and 2] as our main resource. A σ-algebra on a set X is a collectionM of subsets of X such that ∅ ∈M, if S ∈M, then X \ S ∈ M, and if a countable collection S1, S2, . . . ∈ M, then ∪i=1Si ∈ M. That is, M is closed under complements and countable unions, and contains the empty...
متن کاملA Generalization of Bounded Haar Measure.
We wish to thank Karen Rutherford, Erna Rollefson, Charles Hill, and Douglas MacPherson for assistance in various phases of these experiments, and Julius Adler for the Lederberg mutants and helpful comments. The following abbreviations are used: Gal, galactose; Gal-1-P, a-D-galactose-1-phosphate; G-1-P, a-D-glucose-l-phosphate; G-6-P, glucose-6-phosphate; UDPGal, uridine diphosphogalactose; UDP...
متن کاملHaar Measure for Compact Right Topological Groups
Compact right topological groups arise in topological dynamics and in other settings. Following H. Furstenberg's seminal work on distal flows, R. Ellis and I. Namioka have shown that the compact right topological groups of dynamical type always admit a probability measure invariant under the continuous left translations; however, this invariance property is insufficient to identify a unique pro...
متن کاملMotivic Haar Measure on Reductive Groups
We define a motivic analogue of the Haar measure for groups of the form G(k((t))), where k is an algebraically closed field of characteristic zero, and G is a reductive algebraic group defined over k. A classical Haar measure on such groups does not exist since they are not locally compact. We use the theory of motivic integration introduced by M. Kontsevich to define an additive function on a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1983
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1983-0677233-2